Numerical Simulation of Mixed Convection Flows in a Square Double Lid-Driven Cavity Partially Heated Using Nanofluid
Authors
Abstract:
A numerical study has been done through an Al2O3–water in a double lid-driven square cavity with various inclination angles and discrete heat sources. The top and right moving walls are at low temperature. Half of the left and bottom walls are insulated and the temperatures of the other half are kept at high. A large number of simulations for a wide range of Richardson number of 0.1 to 10, Reynolds number from 1 to 100, inclination angle of cavity from -90o to 90o and solid volume fraction between 0 and 0.06 are performed. The results are presented in the form of streamline, isotherm and Nusselt number plots. The influence of solid volume fraction of nanofluids and angle of inclination on hydrodynamic and thermal characteristics have been analyzed and discussed. As a result, it was found that the heat transfer increases with increase in solid volume fraction for a constant Reynolds number, heat transfer also increases with increase in Richardson and Reynolds for a particular volume fraction.
similar resources
numerical simulation of mixed convection flows in a square double lid-driven cavity partially heated using nanofluid
a numerical study has been done through an al2o3–water in a double lid-driven square cavity with various inclination angles and discrete heat sources. the top and right moving walls are at low temperature. half of the left and bottom walls are insulated and the temperatures of the other half are kept at high. a large number of simulations for a wide range of richardson number of ...
full textNumerical Simulation of Mixed Convection Flows in Lid- Driven Square Cavity
Mixed convection heat transfer in two-dimensional liddriven rectangular cavity filled with air (Pr =0.71) is studied numerically. A hybrid scheme with multiple relaxation time Lattice Boltzmann Method (MRT-LBM) is used to obtain the velocity field while the temperature field is deduced from energy balance equation by using the Finite Difference Method (FDM). The main objective of this work is t...
full textNumerical Study of Hydro-Magnetic Nanofluid Mixed Convection in a Square Lid-Driven Cavity Heated From Top and Cooled From Bottom
In the present research mixed convection flow through a copper-water nanofluid in a driven cavity in the presence of magnetic field is investigated numerically. The cavity is heated from top and cooled from bottom while its two vertical walls are insulated. The governing equations including continuity, N-S and energy equations are solved over a staggered grid system. The study is conducted for ...
full textNumerical Investigation of Magnetic Field Effects on Mixed Convection Flow in a Nanofluid-filled Lid-driven Cavity
In this work, the stencil adaptive method is applied to investigate the effects of a magnetic field on mixed convection of Al2O3-water nanofluid in a square lid-driven cavity. The incompressible Navier-Stokes equations are solved by an adaptive mesh method which has superior numerical advantages compared to the traditional method on the uniform fine grid. The main objective of this study is to ...
full textnumerical study of hydro-magnetic nanofluid mixed convection in a square lid-driven cavity heated from top and cooled from bottom
in the present research mixed convection flow through a copper-water nanofluid in a driven cavity in the presence of magnetic field is investigated numerically. the cavity is heated from top and cooled from bottom while its two vertical walls are insulated. the governing equations including continuity, n-s and energy equations are solved over a staggered grid system. the study is conducted for ...
full textNumerical Study of Mixed Convection in a Lid-Driven Enclosure with a Centered Body Using Nanofluid Variable Properties
In the present study, mixed convection laminar flow around an adiabatic body in a Lid-driven enclosure filled with nanofluid using variable thermal conductivity and variable viscosity is numerically investigated. The fluid around the body in the enclosure is a water- based nanofluid containing Al2O3 nanoparticles. The Vertical enclosure’s walls are maintained at constant cold temperature an...
full textMy Resources
Journal title
volume 2 issue 3
pages 301- 311
publication date 2012-09-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023